

„Network Connectivity Solutions‟

Necoso

Het Kasteel 315
7325 PE Apeldoorn

The Netherlands

Phone: +31-(0)55-3601410

Fax: +31-(0)84-7246122
Website: www.necoso.com

E-mail: info@necoso.com

ID1021

AN 001 - Adapting web content for ID1021

This document is property of Necoso. No part of it may be reproduced or used in any form
or by any means without written permission of the owner.

© 2003-2004 Necoso - All rights reserved.

The ID1021 is a product from Iolia Datacom B.V. Necoso is the exclusive dealer of Iolia products for Europe.

Project

Customer

Classification

Author(s)

ID1021

<Customer>

Public

Robert Hulsebos

Document ID

Version

Status

Date

Application Note

2.0

Final

01-jan-2004

Summary

This document contains instructions and help for engineers that are about to create or
customize web content for the ID1021 internet communications coprocessor from

Necoso.

Document History

Version Date Author(s) Description

1.0 04-apr-2002 Robert Hulsebos First draft version

1.1 13-jan-2003 Robert Hulsebos Updated for ID1021 firmware v1.6.
Added paragraph about
internationalizing web pages.

2.0 01-jan-2004 Robert Hulsebos Updated for ID1021 firmware v2.1.
Added paragraph about
internationalizing web pages. Necoso
update.

Document Distribution

Version Date To Company

1.0 04-apr-2002 -major customers-

1.1 13-jan-2003 -same as previous version-

2.0 01-jan-2004 -same as previous version-

Table of Contents

1 Introduction 5
1.1 Scope 5
1.2 Intended audience 5
1.3 Feed back 5
1.4 Terms and abbreviations 5
1.5 References 6
1.6 Overview 6

2 Architecture of ID1021 embedded HTTP server 7
2.1 Architecture description 7
2.2 HTTP sample sessions 8

2.2.1 Static HTML 9
2.2.2 Dynamic HTML 9
2.2.3 Passing parameters to an ID1021 application 10

2.3 Start page 12
3 Customizing HTML 12

3.1 Internationalization 12
3.2 Adding new HTML files 13
3.3 Adapting existing HTML files 13

3.3.1 ASP tags 13
3.3.2 References to ISA applications 13
3.3.3 Other HTML items 13

3.4 Testing the adapted HTML files 13
3.5 Other hints 14

Table of tables

Table 1: Terms and abbreviations 6
Table 2: Referenced documents 6
Table 3: HTTP session for static HTML page 9
Table 4: HTTP session for dynamic HTML page 10
Table 5: HTTP session for dynamic HTML page 11

Table of figures

Figure 1: Architecture of ID1021 embedded HTTP server ... 7

1 Introduction

This document is an application note for engineers who want to create/adapt the web
content (HTML pages, picture files, etc) that are to be used with the HTTP server of the
ID1021 internet communication coprocessor from Necoso.

Normally, the ID1021 is integrated into an OEM device for realizing a web based user
interface for the device. The ID1021 enables an end-user of the OEM device to use a
web browser (e.g. Microsoft Internet Explorer or Netscape Navigator) for
monitoring/controlling the OEM device over an ethernet network. For this the ID1021
firmware includes an embedded HTTP server, FTP server and file system driver. Together
they allow for the HTML pages of the OEM device‟s user interface to be created and

tested on a PC or workstation elsewhere. When this process is finished, the resulting
HTML files can be downloaded to the flash disk of the ID1021. The integrated HTTP
server of the ID1021 will then present these HTML files when called upon by a HTTP
client. (web browser)

Although there are no HTML format-specific limitations as to the contents of the HTML
files for the ID1021, there are certain ID1021-specific aspects that must be kept in mind
when creating/adapting HTML files for the ID1021. This is important, because the
applications running inside the ID1021 may depend on these aspects. Ignoring these
aspects may result in unexpected results or corrupted user interfaces. This document
describes the HTML programming aspects.

1.1 Scope

This document focuses on the HTML programming aspects of the ID1021 only.

1.2 Intended audience

This document was intended for web design/software engineers that are responsible
creating/adapting the HTML pages for the ID1021. Basic knowledge of the ID1021, the
HTTP protocol and the HTML language are assumed.

1.3 Feed back

This application note document is a „living‟ document for the benefit of all ID1021 users
and developers. It will grow with the passing of time. It is based on our and your hands-
on experiences while developing web based user interface solutions with the ID1021.
Please send any suggestions for improvements, hints and comments to the author –
they will be appreciated.

1.4 Terms and abbreviations

The table below contains an alphabetical list of the terms and abbreviations used in this
document.

Term/abbreviation Description

ASCII American Standard Code for Information Interchange, defines
character-set symbols for characters with value in range 0 –
127.

ASP Active Server Page, Microsoft definition for dynamic HTML page,
i.e. a HTML page for which content may vary in time.

EFS Embedded File System

ESA Embedded Server Application. Application format for ID1021
applications which are permanently active. See also ISA.

Firmware In-product software, in the context of this document: the
software that is stored within the boundaries of the ID1021
housing.

FAQ Frequently Asked questions

FTP File Transfer Protocol, as specified by RFC 959.

HTML Hyper Text Markup Language. Format for HTML pages (also
called „web pages‟), as specified by RFC 1866.

HTTP Hyper Text Transfer Protocol. Communication protocol, as
specified by RFC 1945, and used by for example a web browser

for retrieving a web page from a web server. (HTTP server)

IP Internet Protocol, as specified by RFC 791

ISA Internet Server Application. Application format for ID1021
applications that are only active when called upon by the ID1021
HTTP server. See also ESA.

ID1021 Internet communications coprocessor from Necoso.

OEM Original Equipment Manufacturer

PC Personal Computer

RFC Request For Comment. Normally RFC <number> refers to an
internet protocol specification document with number
<number>. The RFC documents are publicly available and can
be downloaded from website http://www.ietf.org/rfc/
RFC 1880 is an overview document and contains an overview of
all available Internet Standards and their most up to data RFCs.

TCP Transmission Control Protocol, as specified by RFC 793.

Telnet Telnet protocol, as specified by RFC 854.

URL Uniform Resource Locator, specification for location of a web
page. Contains internet address of webserver and file name of
web page on that webserver. E.g. 192.168.0.1/index.htm

Web content Collection of HTML files, picture files and other files that may be
request by an HTTP client (web browser) when connected to a
HTTP server.

Table 1: Terms and abbreviations

1.5 References

The following table lists the documents that are referenced in this document.

Reference Document ID Version Description/title

[INSTMAN] Installation
manual.doc

2.0 ID1021 installation manual for
OEM customers.

[ID1021] ID1021.PDF 2.0 ID1021 datasheet, can be

downloaded from
www.necoso.com

[HTTP] RFC1945.TXT May 1996 “Hypertext Transfer Protocol --
HTTP/1.0”

[HTML] RFC1866.TXT V2.0 “Hypertext Markup Language
v2.0”

Table 2: Referenced documents

1.6 Overview

This document is organized in chapters and (sub)paragraphs. Chapters are used for
dividing aspects into major aspect groups. Paragraphs and subparagraphs are used to
elaborate on details aspects within a specific aspect group.

Chapter 1 introduces this document.
Chapter 2 describes the basic architecture of the ID1021 integrated HTTP server.
Chapter 3 describes what to do and not to do when customizing HTML for the ID1021.
Also contains some hints for testing and extending the HTML user interface.

2 Architecture of ID1021 embedded HTTP server

2.1 Architecture description

Before we can elaborate on the aspect of customizing HTML for the ID1021 we must first
understand the basic architecture of the ID1021 integrated HTTP server.

Figure 1: Architecture of ID1021 embedded HTTP server

The figure above outlines the basic ID1021 architecture. A short description of each of
the items depicted in this figure:

Development PC : This represents the PC or workstation that is used to do the
application and/or web content development for the ID1021. The resulting application
and web content files are transferred to the ID1021 using the FTP protocol. The
development PC runs the FTP client, the ID1021 the FTP server. On the ID1021 the FTP
server communicates with the Embedded File System (EFS) driver for storing/retrieving
files to/from the flash disk and serial EEPROM disk.

Flash disk: This is the ID1021 internal solid state disk that is based on flash EEPROM
technology. Due to its block-erase characteristics it is less suitable for storage of volatile
data, i.e. data that changes a lot. Therefore with the ID1021 it is normally used for
storing non-volatile data such as application files and web content. (HTML pages, picture

files, etc)
With the standard ID1021 the serial EEPROM disk is about 2 MB in size.

Serial EEPROM disk: This is the ID1021 internal solid state disk that is base on serial
EEPROM technology. Due to its byte-erase characteristics it is suitable for storage of
volatile data, i.e. that is often reprogrammed. (e.g. configuration data) Due to its

relatively slow serial access characteristics it is less suitable for storage of application
files and web content.

With the standard ID1021 the serial EEPROM disk is about 8 KB in size, so relatively
small.

Embedded FTP server: This driver implements the server part of the FTP protocol. It
communicates with a FTP client on the development PC for transfer of file data. For
storage/retrieval of file data it communicates with the Embedded File System driver.

Embedded File System (EFS) driver: This is the driver that implements a file system
for the flash disk and the serial EEPROM disk so that the disk can be accessed using
open/close/read/write operations at file level.

ISA applications: ISA stands for Internet Server Application. ISA applications are

executable programs that are only active („executed‟) when called upon by the HTTP
server. As opposed to ESA applications, which are permanently active after power on of
the ID1021.The HTTP server will only call an ISA application when it is requested by an
HTTP client. (usually a web browser)
ISA applications are normally used to gather run-time data and present the data as part
of a (dynamic) HTML page. For example an HTML page that contains the OEM device

temperature value, an ISA may be called to get the current temperature from the OEM
device and insert it in the HTTP data stream to the HTTP client. The temperature value
may be retrieved directly from the OEM device itself or may be derived from an ESA
application. (that has integrated OEM device driver for communications with the OEM
device)
Another difference between ISA and ESA applications is the number of instantiations that
may occur. Of one ISA application multiple instantiations may be active at the same
time. (when multiple HTTP clients are requesting the same web page calling upon the
ISA application) All instantiations share the same code, but have their own set of
application data. Of one ESA application only one instance is active at any moment in
time.
ISA applications are stored on the flash disk of the ID1021.
A special ISA application is the default.isa application. This ISA application is called by

the HTTP server for client requests of files with the .htm filename extension. The
default.isa application implements access security for HTML pages and interprets the
password.txt file if present on the flash disk, see [INSTMAN] for more details.

ESA applications: ESA stands for Embedded Server Application. An ESA application is
an application that is permanently active, i.e. it is started when the ID1021 is powered
on and is never stopped. Normally, ESA applications contain device drivers and other

service providing software modules which must be permanently active. See also
description of ISA applications above.
ESA applications are stored on the flash disk of the ID1021.

HTTP client: PC or workstation running HTTP client software, usually in the form of a
web browser. (e.g. Microsoft Internet Explorer of Netscape Navigator)

Embedded HTTP server: Central aspect in the architecture is the Embedded HTTP
server. HTTP clients can call upon the HTTP server for retrieving web pages and picture
files. The HTTP server calls the EFS driver for retrieving those files from the flash disk of
the ID1021 and transmits the file data using the HTTP protocol to the web client. If a
HTML page contains a reference to an ISA application then the HTTP server will start the
ISA application for retrieval of run-time data and insertion of run-time data into the

HTTP data stream to the HTTP client. As soon as all of the data for a HTTP page is
transmitted to the client the ISA application is stopped.

2.2 HTTP sample sessions

2.2.1 Static HTML

The following example illustrates a HTTP session for a static HTML page (e.g. static.htm),
i.e. a page that contains no items that must be filled at run-time in by the HTTP server.

Step HTTP client side
(web browser)

ID1021 side

1 Requests file static.htm
(with HTTP „Get‟ or „Post‟
command)

2 HTTP server starts the default.isa application as
the requested file has the .htm extension.

3 The default.isa application scans the flash disk for
password.txt file. If such a file exists, then it is
read and a password prompt is presented to the
HTTP client first. If none exists, then the
requested HTML file (static.htm) is transmitted to
the HTTP client.

4 The default.isa application is ended when
transmission of HTTP data is complete.

5 Displays the received HTTP
data (contents of the
static.htm)

Table 3: HTTP session for static HTML page

In this example the HTTP client receives the exact contents of the static.htm file as it is
stored on the flash disk of the ID1021. Not a byte is changed. That‟s why we call it
static.

2.2.2 Dynamic HTML

The following table illustrates a HTTP session for a dynamic HTML page (e.g. temp.htm),
i.e. a page that contains a temperature items that must be filled at run-time in by the
HTTP server. It is to contain the actual temperature of the OEM device, i.e. the
temperature at the moment in time the HTTP server was called by the client.

Step HTTP client side
(web browser)

ID1021 side

0 The oem.esa application communicates with the
OEM device and receives a new temperature value
every second.

1 Requests file temp.isa (with
HTTP „Get‟ or „Post‟
command)

2 HTTP server starts the temp.isa application.

3 The temp.isa application communicates with
oem.isa application and retrieves the latest OEM
device temperature value.

4 The temp.isa application opens the temp.htm file.
It calculates the new (dynamic) contents size and
reports this size to the HTTP server. (as it is about

to replace parts of the original HTML contents with
run-time temperature data - the size of the
content will therefore be different from that of the
static temp.htm contents)
The temp.isa also hands a buffer to the HTTP
server that contains the actual static content from

the temp.htm file.

5 The HTTP server transmits a HTTP header to the

HTTP client that contains the new contents size.

6 The HTTP server reads content data from the
buffer and parses the data. If it encounters an
ASP tag in the data then it calls the temp.isa to
replace the ASP tag with the run-time

temperature value. All other content data is
transmitted transparently to the HTTP client.

7 The temp.isa application is ended when
transmission of HTTP data is complete.

8 Displays the received HTTP
data (= contents of the

temp.htm – with ASP tag
replaced by latest
temperature value)

Table 4: HTTP session for dynamic HTML page

Note that in this example the HTTP client does not request the temp.htm file itself but

the temp.isa application that goes with this HTML file. Note that as a result of this the
default.isa application is not called by the HTTP server. Instead the temp.isa application
is called. The temp.isa on its turn opens the temp.htm file and passes it contents to the
HTTP server.

An ASP tag is a special HTML tag. (refer to [HTML] for more details about tags in general
or the ASP tag especially) Normally with the ID1021 it has the format

 <%Txx%>

where xx is a unique decimal tag number.
The unique tag number is used by the ISA application to identify which tag was
encountered by the HTTP server and with what run-time value it is to be replaced. In the

example above there was only one ASP tag – the one for the temperature value – but in
other HTML pages their might by more than one ASP tag.

2.2.3 Passing parameters to an ID1021 application

The table below illustrates another HTTP session example. This time the user clicks on a
button in the fan.htm page to start the cooling fan that is integrated in the OEM device.

The fan.htm page also contains an indicator representing the current status of the
cooling fan. (on/off)

Step HTTP client side
(web browser)

ID1021 side

0 The oem.esa application communicates with the
OEM device and receives a new temperature
sample every second.

1 User clicks on „start fan‟
button. The web browser
builds a HTTP query string
for the button and requests
file fan.isa (with HTTP „Get‟
or „Post‟ command) The
HTTP command includes
the query string)

2 HTTP server starts the fan.isa application. It hands
the parameters from the query string to the
fan.isa application.

3 The fan.isa checks the parameters and determines

that the cooling fan is to be switched on. It calls

the oem.esa to activate the cooling fan. It also
updates its own administration for the change of
state of the cooling fan.

4 The fan.isa application opens the fan.htm file. It
calculates the new (dynamic) contents size and

reports this size to the HTTP server. (as it is about
to replace parts of the original HTML contents with
the new cooling fan state - the size of the content
will therefore be different from that of the static
fan.htm contents)
The fan.isa also hands a buffer to the HTTP server
that contains the actual static content from the

fan.htm file.

5 The HTTP server transmits a HTTP header to the
HTTP client that contains the new contents size.

6 The HTTP server reads content data from the
buffer and parses the data. If it encounters an
ASP tag in the data then it calls the fan.isa to

replace the ASP tag with the new cooling fan
state. All other content data is transmitted
transparently to the HTTP client.

7 The fan.isa application is ended when transmission
of HTTP data is complete.

8 Displays the received HTTP
data (= contents of the

fan.htm – with ASP tag
replaced by latest cooling
fan state)

Table 5: HTTP session for dynamic HTML page

Note that this example is only different from the previous one in the sense that now a

parameter is transferred from the HTTP client to the HTTP server. The HTTP server
hands this parameter to the ISA application, which then takes the appropriate action.
(calling the oem.esa to switch on the cooling fan)

HTTP query strings in general take the form of

 URL?parameter1=value1¶meter2=value2& parameter3=value3

where

- URL is the location of the ISA application, in our example: /fan.isa
- parameter1 is the name of the first parameter to be transferred
- value1 is the new value for parameter1
- parameter2 is the name of the first parameter to be transferred
- value2 is the new value for parameter2
etc.

Refer to [HTTP] for more detailed information about URLs, HTTP query strings and
parameters.

In our example the HTTP query string (with just one parameter) could have been like
this:

 /fan.isa?coolingfan=on

For building the query string the web browser uses the names and values for the
parameters that are mentioned in the HTML source file. For the button in our example
the fan.htm file would then include a HTML fragment like this:

 <input type="submit" value="on" name="coolingfan">

As the fan.isa application uses the name and value of the parameter to determine what
action should be taken, one can understand that is crucially important these names and
values must not be changed when adapting the HTML files. (for example for translation
of the HTML page to the Dutch language)

In fact the names and values of the query parameters form the interface between the
user interface (HTML) part and the OEM device interface part. (ISA, ESA applications)

2.3 Start page

If no filename is specified in the URL, e.g. when only the IP address of the ID1021 is
entered in URL-window of a web browser, then the ID1021 HTTP server will call the
default.isa application for presenting the default start page. This page is the page with
the name „index.htm‟.
So for displaying the start page it is required that at least the default.isa and the
index.htm files are present on the flash disk of the ID1021.

3 Customizing HTML

Now that we know about the basic architecture of the ID1021 HTTP server we can start
customizing the HTML pages for it.

Usually the main reasons for customizing the HTML pages are:

- Translation of the user interface into another (foreign) language
(internationalization)

- Re-styling the user interface to match the company‟s house style.

For both situations we assume there is a working set of existing HTML pages and ISA
applications.

3.1 Internationalization

With internationalization is meant setting up the HTML files for different languages. The
java script language that can be used in HTML pages for the ID1021 support features
that enable detection of the type and version of the web browser the client is using as
well as his nationality/language. Based on this it should theoretically be possible to use

different set of HTML pages for user with different languages. (run-time language
switching) We have not tested/implemented this yet at Necoso.

Other aspects to keep in mind when internationalizing your web pages:
 The default encoding or character set that is used for the web page. Some web

browser support auto-detect of the required character encoding, others do not. We

usually „encode‟ our webpage using the ISO 8859-1 character set. The ISO-8859-1
character set is also referred to as the „Western European‟ character set or the
„Windows-1252‟ character set. The first 128 characters in the ISO-8859-1 character
set match the ASCII character set. (HTML: „charset=windows-1252‟) This character
set includes diacritical characters most western (European) languages and will do for
most ID1021 applications used in the United States and Europe.

 Texts inserted in the HTTP data stream by the ISA applications them selves (in

dynamic HTML pages) must be translated by changing the ISA applications
themselves or extending them for support of multiple languages by means of a query
parameter that indicates the wanted user interface language. Typical candidates for
such solutions are ISA generated prompts, error messages, etc.

3.2 Adding new HTML files

New static HTML files can be added with out any problems. (e.g. for adding your own
HTML help pages)
References to these new pages can be included in existing HTML pages the usual way,

i.e. by including direct hyperlinks to the new pages. The same goes for adding new
(static) picture files (.GIF, .JPG, etc)

New dynamic pages can only be added when the corresponding ISA applications are also
added or an existing ISA is used. The latter option requires detailed information about
the ISA, its parameters and its parameter values.

3.3 Adapting existing HTML files

3.3.1 ASP tags

When adapting the HTML files care should be taken to not change the ASP tags that are
used by the ISA applications. ASP tags for the ID1021 have the following format:

 <%Tnn%>

where nn stands for a 2 digit decimal tag number.
IMPORTANT: ASP tags must not be removed from the HTML files, nor must new ones
be added.
The order in which the ASP tags appear in the HTML file is not important, though. They
may be moved around.

3.3.2 References to ISA applications

IMPORTANT: Don‟t change references to ISA applications (e.g. in FORM tags).
Don‟t change GET commands into POST commands or vice versa.

3.3.3 Other HTML items

Other HTML items that must not be changed are the names and values for user interface
items in OPTION, SELECT or INPUT tags. As we have seen in paragraph 2.2.3 the ISA
applications depend on these, so don‟t change them!

3.4 Testing the adapted HTML files

Some hints for testing the adapted HTML files:

- Always keep a copy of the original HTML files. So you can do a file comparison if

things go wrong or you encounter unexpected behavior.

- Test with more then one web browser. Experience has learned that Microsoft Internet

Explorer is less critical about HTML errors like open tags than for example the
Netscape Navigator. Pages that look OK with Microsoft Explorer may give unexpected
results with Netscape Navigator.

- Test the HTML pages at different screen resolutions. Not all users may use the same

resolution as you have on your development PC.

- If you customized your web pages for a foreign language, then test the language

specific and or OEM device specific characters. (ASCII/ANSI characters > 127)
Especially where the OEM device is a device that uses the web based user-interface
input for means of its own. For example if the OEM device is a LED or LCD display,
then test that the characters that are input at the web interface are displayed as
expected on the display itself. Typical test case is here the „euro sign‟ (€) for
example.

3.5 Other hints

- Keep the HTML files lean & mean. Remove any superfluous comments, tags, spacing
and other items that are not absolutely necessary. Remember that the ID1021 has
only limited space for storing applications and web content. Also a user interface

based on large HTML and picture files will decrease overall performance and will
make a „sluggish‟ impression on the user.

- HTML pages that contain pictures that need to be loaded every time the user

requests the page, can be cached on the client side by using a meta tag in the
header of the HTML file.

 <meta http-equiv="expires" content="thu, 08 jun 2067 00:00:00 gmt">

This tells the web browser that the page will only expire in the far future and that it
does not have to retrieve it again from the ID1021 every next time the user request
the same page. The web browser will load this page only once and „remember‟ the
contents every next time. Note that this only works for static pages and if no query
string is used with the page.

- Automatic reloading of a HTML page can be realized using a meta tag in the header

of the HTML file. For example: the following fragment causes the HTML to be
reloaded automatically every 5 seconds:

 <meta http-equiv="refresh" content="5">

 Alternatively java script could also be used to realize similar effects.

- By default the HTTP server of the ID1021 will present the index.htm file if no file

name is specified in the URL in the web browser, see paragraph 2.3. The index.htm is
a static web page and can therefore not contain any run-time information. What if
you want a dynamic starting page that does contain run-time information? (i.e. if I
want my temp.isa application to be called as starting page) There are 2 ways of
realizing this:

1) By writing your own default.isa application. Rather cumbersome.
2) By using an index.htm with contents like this:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta http-equiv="refresh" content="0;URL=temp.isa">

<title>Index</title>
</head>

<body>

</body>

</html>

The second meta line with the “refresh” keyword in this index.htm will force the web
browser to automatically load the temp.isa application 0 seconds after loading of the
index.htm itself is complete.

